سفارش تبلیغ
صبا ویژن

فونت زیبا سازفونت زیبا سازفونت زیبا سازفونت زیبا سازفونت زیبا سازفونت زیبا سازفونت زیبا ساز

لطفا از تمام مطالب دیدن فرمایید.

techniques. The goal of refractive surgery is to avoid permanently weakening the cornea with incisions and to deliver less energy to the surrounding tissues.

Experimental techniques

  • "plain" LASIK: LASEK, Epi-LASIK,
  • Sub-Bowman’s keratomileusis (thin flap LASIK),
  • Wavefront-guided PRK,
  • advanced intraocular lenses.
  • Femtosecond laser intrastromal vision correction: using all-femtosecond correction, for example, Femtosecond Lenticule EXtraction, FLIVC, or IntraCOR),
  • Keraflex: a thermobiochemical solution which has received the CE Mark for refractive correction.[81] and is in European clinical trials for the correction of myopia and keratoconus.[82]
  • Technolas FEMTEC laser: for incisionless IntraCOR ablation for presbyopia,[83] with trials ongoing for myopia and other conditions.[84]
  • LASIK with the IntraLase femtosecond laser: early trials comparing to the «LASIK with microkeratomes for the correction of myopia suggest no significant differences in safety or efficacy. However, the femtosecond laser has a potential advantage in predictability, although this finding was not significant».[85]

Comparison to photorefractive keratectomy

A systematic review that compared PRK and LASIK concluded that LASIK has shorter recovery time and less pain.[86] The two techniques after a period of one year have similar results.[86]

A 2017 systematic review found uncertainty in visual acuity, but found that in one study, those receiving PRK were less likely to achieve a refractive error, and were less likely to have an over-correction than compared to LASIK.[

 






تاریخ : یکشنبه 97/2/30 | 11:27 عصر | نویسنده : faezehe meskini | نظرات ()

"A method and apparatus for modifying the curvature of a live cornea via use of an excimer laser. The live cornea has a thin layer removed therefrom, leaving an exposed internal surface thereon. Then, either the surface or thin layer is exposed to the laser beam along a predetermined pattern to ablate desired portions. The thin layer is then replaced onto the surface. Ablating a central area of the surface or thin layer makes the cornea less curved, while ablating an annular area spaced from the center of the surface or layer makes the cornea more curved. The desired predetermined pattern is formed by use of a variable diaphragm, a rotating orifice of variable size, a movable mirror or a movable fiber optic cable through which the laser beam is directed towards the exposed internal surface or removed thin layer."[77]

The patents related to so-called broad-beam LASIK and PRK technologies were granted to US companies including Visx and Summit during 1990-1995 based on the fundamental US patent issued to IBM (1983) which claimed the use of UV laser for the ablation of organic tissues.[77]

Implementation in U.S.

The LASIK technique was implemented in the U.S. after its successful application elsewhere. The Food and Drug Administration (FDA) commenced a trial of the excimer laser in 1989. The first enterprise to receive FDA approval to use an excimer laser for photo-refractive keratectomy was Summit Technology (founder and CEO, Dr. David Muller).[79] In 1992, under the direction of the FDA, Greek ophthalmologist Ioannis Pallikaris introduced LASIK to ten VISX centres. In 1998, the "Kremer Excimer Laser", serial number KEA 940202, received FDA approval for its singular use for performing LASIK.[80] Subsequently, Summit Technology was the first company to receive FDA approval to mass manufacture and distribute excimer lasers. VISX and other companies followed.[80]

 

The excimer laser that was used for the first LASIK surgeries by I.Pallikaris

Pallikaris suggested a flap of cornea could be raised by microkeratome prior to the performing of PRK with the excimer laser. The addition of a flap to PRK became known as LASIK.

Further research

Since 1991, there have been further developments such as faster lasers; larger spot areas; bladeless flap incisions; intraoperative corneal pachymetry; and "wavefront-optimized" and "wavefront-guided"






تاریخ : یکشنبه 97/2/30 | 11:27 عصر | نویسنده : faezehe meskini | نظرات ()

Topography-assisted

Topography-assisted LASIK is intended to be an advancement in precision and reduce night vision side effects. The first topography-assisted device received FDA approval September 13, 2013.[69][70]

History

Barraquer"s early work

In the 1950s, the microkeratome and keratomileusis technique were developed in Bogotá, Colombia, by the Spanish ophthalmologist Jose Barraquer. In his clinic, he would cut thin (one hundredth of a mm thick) flaps in the cornea to alter its shape. Barraquer also investigated how much of the cornea had to be left unaltered in order to provide stable long-term results.[71] This work was followed by that of the Russian scientist, Svyatoslav Fyodorov, who developed radial keratotomy (RK) in the 1970s and designed the first posterior chamber implantable contact lenses (phakic intraocular lens) in the 1980s.

Laser refractive surgery

In 1980, Rangaswamy Srinivasan, at the IBM Research laboratory, discovered that an ultraviolet excimer laser could etch living tissue, with precision and with no thermal damage to the surrounding area. He named the phenomenon "ablative photo-decomposition" (APD).[72] Five years later, in 1985, Steven Trokel at the Edward S. Harkness Eye Institute, Columbia University in New York City, published his work using the excimer laser in radial keratotomy. He wrote,

"The central corneal flattening obtained by radial diamond knife incisions has been duplicated by radial laser incisions in 18 enucleated human eyes. The incisions, made by 193 nm far-ultraviolet light radiation emitted by the excimer laser, produced corneal flattening ranging from 0.12 to 5.35 diopters. Both the depth of the corneal incisions and the degree of central corneal flattening correlated with the laser energy applied. Histopathology revealed the remarkably smooth edges of the laser incisions."[73]

Together with his colleagues, Charles Munnerlyn and Terry Clapham, Trokel founded VISX USA inc.[74] Marguerite B. MacDonald MD performed the first human VISX refractive laser eye surgery in 1989.[75]

Patent

A number of patents have been issued for several techniques related to LASIK. Stuart I. Brown and Josef F. Bille filed a patent on surgical lasers in 1988.[76] Samuel E. Blum, Rangaswamy Srinivasan and James Wynne filed a patent application on the ultraviolet excimer laser, in 1982, issued in 1988.[77] In 1989, Gholam A. Peyman was granted a US patent for using an excimer laser to modify corneal curvature.[78] It was,






تاریخ : یکشنبه 97/2/30 | 11:26 عصر | نویسنده : faezehe meskini | نظرات ()

Wavefront-guided

Wavefront-guided LASIK is a variation of LASIK surgery in which, rather than applying a simple correction of only long/short-sightedness and astigmatism (only lower order aberrations as in traditional LASIK), an ophthalmologist applies a spatially varying correction, guiding the computer-controlled excimer laser with measurements from a wavefront sensor. The goal is to achieve a more optically perfect eye, though the final result still depends on the physician"s success at predicting changes that occur during healing and other factors that may have to do with the regularity/irregularity of the cornea and the axis of any residual astigmatism. Another important factor is whether the excimer laser can correctly register eye position in 3 dimensions, and to track the eye in all the possible directions of eye movement. If a wavefront guided treatment is performed with less than perfect registration and tracking, pre-existing aberrations can be worsened. In older patients, scattering from microscopic particles (cataract or incipient cataract) may play a role that outweighs any benefit from wavefront correction. Therefore, patients expecting so-called "super vision" from such procedures may be disappointed.[56][57][58][59]

When treating a patient with preexisting astigmatism, most wavefront-guided LASIK lasers are designed to treat regular astigmatism as determined externally by corneal topography. In patients who have an element of internally induced astigmatism, therefore, the wavefront-guided astigmatism correction may leave regular astigmatism behind (a cross-cylinder effect). If the patient has preexisting irregular astigmatism, wavefront-guided approaches may leave both regular and irregular astigmatism behind. This can result in less-than-optimal visual acuity compared with a wavefront-guided approach combined with vector planning, as shown in a 2008 study.[60] Thus, vector planning offers a better alignment between corneal astigmatism and laser treatment, and leaves less regular astigmatism behind on the cornea, which is advantageous whether irregular astigmatism coexists or not.

The "leftover" astigmatism after a purely surface-guided laser correction can be calculated beforehand, and is called ocular residual astigmatism (ORA). ORA is a calculation of astigmatism due to the noncorneal surface (internal) optics. The purely refraction-based approach represented by wavefront analysis actually conflicts with corneal surgical experience developed over many years.[59]

The pathway to "super vision" thus may require a more customized approach to corneal astigmatism than is usually attempted, and any remaining astigmatism ought to be regular (as opposed to irregular), which are both fundamental principles of vector planning overlooked by a purely wavefront-guided treatment plan.[59] This was confirmed by the 2008 study mentioned above, which found a greater reduction in corneal astigmatism and better visual outcomes under mesopic conditions using wavefront technology combined with vector analysis than using wavefront technology alone, and also found equivalent higher-order aberrations (see below).[60] Vector planning also proved advantageous in patients with keratoconus.[61]

No good data can be found that compare the percentage of LASIK procedures that employ wavefront guidance versus the percentage that do not, nor the percentage of refractive surgeons who have a preference one way or the other. Wavefront technology continues to be positioned as an "advance" in LASIK with putative advantages;[62][63][64][65] however, it is clear that not all LASIK procedures are performed with wavefront guidance.[66]

Still, surgeons claim patients are generally more satisfied with this technique than with previous methods, particularly regarding lowered incidence of "halos," the visual artifact caused by spherical aberration induced in the eye by earlier methods. A meta-analysis of eight trials showed a lower incidence of these higher order aberrations in patients who had wavefront-guided LASIK compared to non-wavefront-guided LASIK.[67] Based on their experience, the United States Air Force has described WFG-Lasik as giving "superior vision results".[68]






تاریخ : یکشنبه 97/2/30 | 11:25 عصر | نویسنده : faezehe meskini | نظرات ()

Operative procedure

Flap creation

 

Flap creation with femtosecond laser

A soft corneal suction ring is applied to the eye, holding the eye in place. This step in the procedure can sometimes cause small blood vessels to burst, resulting in bleeding or subconjunctival hemorrhage into the white (sclera) of the eye, a harmless side effect that resolves within several weeks. Increased suction causes a transient dimming of vision in the treated eye. Once the eye is immobilized, a flap is created by cutting through the corneal epithelium and Bowman"s layer. This process is achieved with a mechanical microkeratome using a metal blade, or a femtosecond laser that creates a series of tiny closely arranged bubbles within the cornea. A hinge is left at one end of this flap. The flap is folded back, revealing the stroma, the middle section of the cornea. The process of lifting and folding back the flap can sometimes be uncomfortable.

Laser remodeling

The second step of the procedure uses an excimer laser (193 nm) to remodel the corneal stroma. The laser vaporizes the tissue in a finely controlled manner without damaging the adjacent stroma. No burning with heat or actual cutting is required to ablate the tissue. The layers of tissue removed are tens of micrometers thick.

Performing the laser ablation in the deeper corneal stroma provides for more rapid visual recovery and less pain than the earlier technique, photorefractive keratectomy (PRK).[53]

During the second step, the patient"s vision becomes blurry, once the flap is lifted. They will be able to see only white light surrounding the orange light of the laser, which can lead to mild disorientation. The excimer laser uses an eye tracking system that follows the patient"s eye position up to 4,000 times per second, redirecting laser pulses for precise placement within the treatment zone. Typical pulses are around 1 millijoule (mJ) of pulse energy in 10 to 20 nanoseconds.[54]

Repositioning of the flap

After the laser has reshaped the stromal layer, the LASIK flap is carefully repositioned over the treatment area by the surgeon and checked for the presence of air bubbles, debris, and proper fit on the eye. The flap remains in position by natural adhesion until healing is completed.

Postoperative care

Patients are usually given a course of antibiotic and anti-inflammatory eye drops. These are continued in the weeks following surgery. Patients are told to rest and are given dark eyeglasses to protect their eyes from bright lights and occasionally protective goggles to prevent rubbing of the eyes when asleep and to reduce dry eyes. They also are required to moisturize the eyes with preservative-free tears and follow directions for prescription drops. Occasionally after the procedure a bandage contact lens is placed to aid the healing, and typically removed after 3–4 days. Patients should be adequately informed by their surgeons of the importance of proper post-operative care to minimize the risk of complications.[55]






تاریخ : یکشنبه 97/2/30 | 11:22 عصر | نویسنده : faezehe meskini | نظرات ()
لطفا از دیگر مطالب نیز دیدن فرمایید
صفحه اصلی |        
لطفا از دیگر صفحات نیز دیدن فرمایید
.: Weblog Themes By M a h S k i n:.